ColorMap: A Data-Driven Approach for Mapping Multivariate Data to Color

نویسندگان

  • Shenghui Cheng
  • Wei Xu
چکیده

A wide variety of color schemes have been devised for mapping scalar data to color. We address the challenge of color-mapping multivariate data. While a number of methods can map low-dimensional data to color, for example, using bilinear or barycentric interpolation for two or three variables, these methods do not scale to higher data dimensions. Likewise, schemes that take a more artistic approach through color mixing and the like also face limits when it comes to the number of variables they can encode. Our approach does not have these limitations. It is data driven in that it determines a proper and consistent color map from first embedding the data into a circular multivariate information display and then fusing this display with a convex (HCL) color space. The attributes are arranged in terms of their similarity and mapped to the display’s periphery to control the embedding. Using this layout, the color of a multivariate data sample is then obtained via modified generalized barycentric coordinate interpolation of the map. Our system has facilities for contrast and feature enhancement, supports both regular and irregular grids, can deal with multi-field as well as multispectral data, and can produce heatmaps as well as choropleth maps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Data-Driven Approach for Mapping Multivariate Data to Color

A wide variety of color schemes have been devised for mapping scalar data to color. Some use the data value to index a color scale. Others assign colors to different, usually blended disjoint materials, to handle areas where materials overlap. A number of methods can map low-dimensional data to color, however, these methods do not scale to higher dimensional data. Likewise, schemes that take a ...

متن کامل

Explorative Analysis of 2D Color Maps

Color is one of the most important visual variables in information visualization. In many cases, two-dimensional information can be color-coded based on a 2D color map. A variety of color maps as well as a number of quality criteria for the use of color have been presented. The choice of the best color map depends on the analytical task users intend to perform and the design space in choosing a...

متن کامل

A clustering approach for mineral potential mapping: A deposit-scale porphyry copper exploration targeting

This work describes a knowledge-guided clustering approach for mineral potential mapping (MPM), by which the optimum number of clusters is derived form a knowledge-driven methodology through a concentration-area (C-A) multifractal analysis. To implement the proposed approach, a case study at the North Narbaghi region in the Saveh, Markazi province of Iran, was investigated to discover porphyry ...

متن کامل

A comparison between knowledge-driven fuzzy and data-driven artificial neural network approaches for prospecting porphyry Cu mineralization; a case study of Shahr-e-Babak area, Kerman Province, SE Iran

The study area, located in the southern section of the Central Iranian volcano–sedimentary complex, contains a large number of mineral deposits and occurrences which is currently facing a shortage of resources. Therefore, the prospecting potential areas in the deeper and peripheral spaces has become a high priority in this region. Different direct and indirect methods try to predict promising a...

متن کامل

Somewhere Over the Rainbow: An Empirical Assessment of Quantitative Colormaps

An essential goal of quantitative color encoding is the accurate mapping of perceptual dimensions of color to the logical structure of data. Prior research identifies weaknesses of “rainbow” colormaps and advocates for ramping in luminance, while recent work contributes multi-hue colormaps generated using perceptually-uniform color models. We contribute a comparative analysis of different color...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017